MindMap Gallery Physiology blood circulation 2
The mind map of Physiology and Blood Circulation 2 shares knowledge about the pumping function of the heart, the electrophysiology and physiological characteristics of the myocardium. If you like it, you can like it and save it~
Edited at 2023-06-18 20:36:00El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
blood circulation
heart pumping function
Heart pumping process and mechanism
Cardiac cycle: often refers to the activity cycle of the ventricles
pumping process
Atrial systole: 0.1 seconds after global diastole (75% of ventricular filling)
ventricular systole
Isovolumic contraction period:
Ejection period:
ventricular diastole
Isovolumetric diastole:
Ventricular filling phase:
The role of the atria in the heart's pumping of blood
Cardiac output and heart pumping reserve
Cardiac Output: Refers to the body's ability to increase metabolism. Expressed as the maximum amount of blood that the heart can eject per minute, that is, maximum cardiac output
Factors affecting cardiac output
Preload of ventricular contraction and myocardial heterolength autoregulation
Atrial end-diastolic pressure is often used to reflect preload (end-diastolic pressure in the atria is almost equal to that of the ventricles)
Allometric autoregulation: the regulation of changes in myocardial contractility by changing the initial length of the myocardium.
Myocardial stretchability is small because: connexins fix myosin to the Z-disk of the sarcomere; the cytoplasm contains a large number of collagen fibers; multiple layers of muscle fibers are arranged in a cross direction
The physiological significance of heterologous autoregulation: finely adjust small changes in stroke volume to maintain a balance between ventricular ejection volume and venous return blood volume.
Factors affecting preload
venous blood return volume
Ventricular filling time; venous return velocity; ventricular diastolic function; ventricular compliance; pericardial intracavity pressure
The amount of blood remaining in the ventricle after ejection
ventricular contraction afterload
Aortic blood pressure is the afterload experienced by the ventricles during contraction
When aortic blood pressure increases, the isovolumic contraction period is prolonged and the ejection period is shortened, resulting in a decrease in stroke volume; conversely
Secondarily causes heterometric regulation: when stroke volume decreases, ventricular end-diastolic volume will increase, and the initial length of myocardium will increase, keeping stroke volume unchanged.
myocardial contractility
Refers to the intrinsic characteristics of the myocardium that can change its contraction strength and speed independent of pre/afterload.
Changes in isometric regulation by humoral and neural mechanisms
eg. The number of activated cross-bridges (Ca concentration in the cytoplasm, affinity of troponin for Ca), activity of myosin ATPase, etc.
heart rate
Within a certain range "40~180", an increase in heart rate increases cardiac output.
If it exceeds 180, the diastolic period of the ventricles will be significantly shortened, and the filling volume during diastole will be reduced, resulting in a decrease in cardiac output.
Less than 40, the ventricular filling period is already close to the maximum, and the filling volume and stroke volume cannot be further increased, resulting in a reduction in cardiac output.
Increased sympathetic nervous activity increases the heart rate; increased parasympathetic nervous activity decreases the heart rate.
Increased adrenaline, norepinephrine, and thyroid hormones, increased heart rate
For every 1°C increase in body temperature, the heart rate can increase by 12 to 18 beats per minute.
Cardiac function evaluation
heart sounds
Electrophysiology and physiological properties of myocardium
Transmembrane potential of cardiomyocytes and its formation mechanism
Resting potential: Ik1 is a non-gated channel and is not controlled by voltage and chemical signals, but its degree of opening can be affected by membrane potential.
Action potential
ventricular myocyte action potential
sinoatrial node cell action potential
Purkinje cell action potential
Physiological properties
Classification according to function and physiological characteristics
Working cells: atrial and ventricular muscles; no self-discipline
Autonomic cells: special conduction system; non-contractile
Electrophysiological properties
Excitability
The ability or characteristic of receiving stimulation to produce excitement; stimulation threshold can be used as a measure
Valid refractory period
Absolute refractory period: from depolarization stage 0 to repolarization stage 3, the membrane potential is as large as -55mV; unable to cause myocardial cell depolarization.
Local reaction period: -55~-60mV; suprathreshold stimulation generates local potential
relative refractory period
-60~-80mV; suprathreshold stimulation causes myocardial cells to generate action potentials
supernormal period
-80~-90mV; subthreshold stimulation generates new action potentials
Factors affecting cardiomyocyte excitability
Resting potential or maximum repolarization potential level: The threshold potential level remains unchanged, the negative value of the resting potential or maximum repolarization potential increases, the stimulation intensity required to cause excitement increases, and the excitability decreases.
threshold potential level
Ion channel properties causing phase 0 depolarization
The relationship between periodic changes in excitability and contractile activity
Premenstrual excitement, premenstrual contraction; compensatory pause
conductivity
Atrioventricular delay: The conduction speed in the atrioventricular node area is slow and is the only channel for excitement to be transmitted from the atrium to the ventricle; ensuring that ventricular contraction occurs after the completion of atrial contraction, which is conducive to ventricular filling and ejection
Factors that determine and influence conductivity
structural factors
cell diameter
Number and functional status of intercellular gap junctions
physiological factors
Action potential phase 0 depolarization speed and amplitude
membrane potential level
Excitability of membranes adjacent to unexcited areas
automatic rhythmicity
Myocardial autonomic cells have the ability or characteristics to automatically generate autonomic excitement in the absence of external stimulation; the automatic depolarization of the action potential phase 4 is the basis of autonomic
heart pacemaker
The main mechanism of the sinus node controlling latent pacemakers: preemptive occupation; overdrive suppression
Factors that determine and influence self-discipline
4-stage automatic depolarization speed
maximum repolarization potential level
threshold potential level
Mechanical properties
Contractibility
Characteristics of myocardial contraction
Synchronous shrinking (all or none)
No tetanic contraction occurs: long effective refractory period
Dependence on extracellular Ca
Influencing factors
preload; afterload; myocardial contractility
Surface electrocardiogram
The reason why the myocardium does not produce tetanic contraction is that the effective refractory period of the action potential is long.