MindMap Gallery differential equations
This figure summarizes the content of the differential equations chapter in Advanced Mathematics. The content is detailed and the steps are comprehensive. A differential equation containing the derivative or differential of an unknown function is called a differential equation. A differential equation in which the unknown function is a function of one variable is called an ordinary differential equation. The general form is f(x, y, y'...y(n))=0, and the standard form is y(n)=f(x, y, y'...y(n-1)).
Edited at 2023-05-01 17:57:13El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
differential equations
basic concept
1. Definition: An equation containing the derivative or differential of an unknown function is called a differential equation, and a differential equation in which the unknown function is a function of one variable is called an ordinary differential equation. The general form is f(x, y, y'...y(n)) = 0, the standard form is y(n)=f(x, y, y'...y(n-1)).
2. Order: the highest order of the derivative or differential of the unknown function
3. Solution: function that satisfies the differential equation General solution: A solution that contains the same number of independent constants as the order of the equation Special solution: solution that does not contain arbitrary constants
4. Initial conditions: conditions for determining any constant in the general solution
theorem
1.y1(x), y2(x) are two second-order homogeneous (linearly independent) solutions, then any linear combination C1y1(x) C2y2(x) is also the (general) solution of this homogeneous differential equation .
2.y1(x), y2(x) are two second-order non-homogeneous linearly independent solutions. For any a b=1, ay1(x) by2(x) is also the solution of the non-homogeneous differential equation. For For any a b=0, ay1(x) by2(x) is the solution of the homogeneous equation corresponding to the equation. In the same way, three solutions are three coefficients.
3. If C1y1(x) C2y2(x) is the general solution of the second-order homogeneous equation, and y*(x) is the special solution of the second-order non-homogeneous equation, then C1y1(x) C2y2(x) y*(x) is not Homogeneous and convenient general solution. 【Feitong=Qitong Feite】
4. If y*1(x) is a special solution of the second-order non-homogeneous equation 1, and y*2(x) is a special solution of the second-order non-homogeneous equation 2, then y*1(x) y*2( x) is a special solution of the second-order non-homogeneous equation 1 and equation 2. [The principle of superposition of solutions]
5.y1, y2, and y3 are three non-homogeneous linearly independent solutions. The general solution is y=C1 (y2-y1) C2 (y3-y2) y3 [subtract any two, and finally add any one solution]
6. The difference between two non-homogeneous special solutions is a homogeneous special solution (used in 5)
1. First-order differential equation
1. Separable variables
y'=f(x)·g(y)
Solution: ∫dy/g(y)=∫f(x)dx
2. Homogeneous equations
y'=f(y/x)
solution: ①Let u=y/x, y'=u+xu' ②So u+xu′=f(u) ③∫du/[f(u)-u]=∫dx/x=lnIxl+C ④u restores u to y/x
3. Can be transformed into a homogeneous equation
4. First-order linear equation
y'+P(x)y=Q(x)
solution: 1. Homogeneous general solution: y=Ce^(-∫P(x)dx) 2. Non-homogeneous general solution: y=e^(-∫P(x)dx)[∫Q(x)e^(∫P(x)dx)+C]
5. Bernoulli’s equation
y+P(x)y=Q(x)y^n(n≠0,1)
solution: ①Let z=y^(1-n) ②Then z+(1-n)P(x)z=(1-n)Q(x) ③According to the 4 solution method
2. Reducible higher-order differential equations
1.y^n=f(x)
Solution: n times of integration
2.y"=f(x,y')
Solution: Let y'=p, turn into p'=f (x, p)
3.y"=f(y,y')
solution: ①Let y'=p, y"=pdp/dy ② Change to pdp/dy=f(y,p) ③Separate the variables after deriving the derivative of y...
3. Structure of solutions to linear differential equations
y"+P(x)y++q(x)y=f(x)① y"+P(x)y'+q(x)y=0 ②
1. If y1(x) and y2(x) are two linearly independent solutions of ②, then y=C1y1 C2y2 is the general solution of ②
2. If y* is a solution of ①, and y=C1y1 C2y2 is the general solution of ②, then y=y* C1y1 C2y2 is the general solution of ①
3.y1 is the solution of ①1, y2 is the solution of ①2, then y1 y2 is the solution of ①1 ①2
4. Solution to second-order constant coefficient linear differential equations
1.Solution steps
① Find the general solution Y of the corresponding homogeneous equation
② Find the special solution y* of the non-homogeneous equation
③Write the general solution y=Y y*
④Find the special solution according to the definite solution conditions
2. Find the general solution Y for y"+py'+qy=0
1. Write the characteristic equation r^2+pr+q=0 and find r1, r2
2. Write the general solution of the equation
①When r1≠r2, Y=C1e^(r1x)+C2e^(r2x)
②When r1=r2, Y=(C1+C2x)e^(r1x)
③When r1, 2=α±阝i, Y=e^(αx)〈C1cos阝x+C2sin阝x〉
3. Use the undetermined coefficient method to find the special solution y* of the non-homogeneous equation
y"+py+qy=
type
Pm(x)e^(αx)
e\(αx)〈Pl(x)cos阝x+Pm(x)sin阝x〉
1. Set y*= according to the equation
x^kQm(x)e^(αx)
x^ke^(αx)〈Rn(x)cos阝x+Tn(x)sin阝x〉
Among them, n=max(l,m), Qm(x) is a general polynomial of degree m of x, if Pm(x)=x^2, then Qm(x)=ax^2 bx c, Rn(x), Tn(x) is a general polynomial of degree n of x
2. The choice of k is divided into the following situations:
①When α or α 靝i is not a characteristic root, k=0
②When α or α 阝i is a single root of the characteristic equation, k=1
③When α is a multiple root of the characteristic equation, k=2
f(x)=Pn(x) Pn(x) is a polynomial of degree n
①0 is not a characteristic root: y*=Hn(x)
②0 is the characteristic single root: y*=xHn(x)
③0 is the characteristic multiple root: y*=x^2Hn(x)
f(x)=Pn(x)e^(αx)
①α is not a characteristic root: y*=Hn(x)e^(αx)
②α is a characteristic single root: y*=xHn(x)e^(αx)
③α is a characteristic multiple root: y*=x^2Hn(x)e^(αx)
f(x)=e^(αx)〈Pn(x)sin阝x+Qm(x)cos阝x〉
α靝i is not a characteristic root: y*=e^(αx)〈Rl(x)cos阝x+Sl(x)sin阝x〉
α靝i is the characteristic root: y*=xe^(αx)〈Rl(x)cos阝x+Sl(x)sin阝x〉
l=max(n,m)
5. Solution to third-order homogeneous linear differential equations with constant coefficients
y^(3)+py"+qy+ry=0
1. Write the characteristic equation into ^(3)+p into ^(2)+q into +r=0
Write the general solution to the equation
①When input 1≠enter 2≠enter 3 (single real root), Y=C1e^(enter 1x)+C2e^(enter 2x)+C3e^(enter 3x)
② When entering 1 = entering 2 ≠ entering 3 (double real root), Y = [C1 + C2x] e^ (entering 1x) + C3e^ (entering 3x)
③ When entering 1 = entering 2 = entering 3 (triple real root), Y = [C1+C2+C3x^2]e^ (entering 1x)
④ Enter 1, 2=α±阝i, enter 3∈ single real root, Y=e^(αx)〈C1cos阝x+C2sin阝x〉+C3e\(enter 3x)
6. Euler’s equation
x^ny^(n)+a1x^(n-1)y^(n-1)+…+an-1xy+any=f(x)
1. Let x=e^t d/dt=D, d^2/dt^2=D^2,…, d^n/dt^n=D^n 2. Then xy'=Dy=dy/dt x^ny^(n)=D(D-1)…(D-n+1)y 3. Substituting into the original equation, it can be transformed into a high-order constant coefficient linear differential equation.