MindMap Gallery msa measurement system analysis mind map
This is a mind map about msa measurement system analysis. Includes measurement data quality, terminology, research on counting measurement systems, impact on decision-making, etc.
Edited at 2023-12-03 23:40:14El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
Quality System Analysis MSA
Measure data quality
definition
M: measure
S: system
Determination of statistical properties of multiple measurement results obtained by operating the Moi measuring system under stable conditions
A: Analysis
the term
standard
Acceptance baseline for comparison
Criteria used to determine acceptance
A known numerical value that, within stated uncertainty limits, is accepted as a true value
Reference value
basic equipment
resolution
Insufficient resolution can be shown through the SPC process.
Minimum reading unit
subtopic
1:10 rule of thumb
Recommendation: The apparent resolution is one-tenth of the 6a standard deviation of the entire process
Effective resolution: The minimum input value at which the output signal is useful to measure
Reference value
truth substitute
truth value
The actual value of the item, unknown and unknowable
Poor position
Accuracy accuracy: "close" to the true value or acceptable base value
Bias: The difference between the observed mean of a measurement and the baseline value
Stability: change in bias over time
Linearity: Bias change across normal operating range
Deterioration in width
Precision precision: "how close" repeated readings are to each other
Repeatability: The same evaluator uses the same instrument to measure the same characteristics of the same part multiple times and the measurement values obtained deteriorate.
Reproducibility Reproduciability: The variation in the average value when different appraisers use the same instrument to measure the same part and the same characteristic.
Measurement system capability: short-term assessment of measurement system variation (e.g. “GRR” includes graphics)
Measurement system performance: long-term assessment of measurement system variation (long-term control chart method)
Sensitivity: The smallest input produces a detectable output signal
Uniformity: Variability throughout the normal operating range Repeatability: Variability in short-term acquisition readings
Consistency: The degree to which repeatability changes over time
Measurement system variation
Capability: Acquisition of variability in readings over short periods of time
Performance: Variability of acquired readings over time; based on total variation
Uncertainty: The range of numerical estimates regarding a measured value within which the true value is believed to be included
summary
theme
Sources of variation in measurement systems
S standard
Work
I instrument
P person/program
E environment
Reasons for measurement system deterioration
deviation
Repeatability
Reproducibility
Research on Counting Measurement System
risk analysis
Kappa
analytical method
Research on metrological measurement systems
stability
Take a sample to establish a baseline value
Determine sample size and measurement frequency and measure regularly
Plot the data in time sequence on the X-ber & R or X-bar & S control chart
Establish standard control charts to control well limits and analyze and evaluate out-of-control or unstable conditions
bias
independent sample method
Take a sample to establish a baseline value
Have one evaluator measure the sample more than 10 times
Histogram the data relative to a baseline value
Calculate the mean of n readings
Calculate repeatability standard deviation (range method)
Determining the biased t-statistic
If 0 falls within the confidence interval around the bias value 1-a, the bias is acceptable at level a
control chart method
Take a sample to establish a baseline value
Have one evaluator measure the sample more than 10 times
Plot the data against a baseline value
Get X-barbar from control chart
Bias is calculated by subtracting the baseline value from X-barbar
Calculate repeatability standard deviation using average range
Determining the t-statistic for bias
If 0 falls within the confidence interval of the bias value 1-a, the bias is acceptable at level a
Linear
Drawing method
Draw best fit line and confidence band
Repeatability and reproducibility
Range method
mean range method
ANOVA
Three basic issues to consider when evaluating measurement systems
The measurement system must show adequate sensitivity
Instruments (and standards) have sufficient resolution
The measurement system has an effective resolution
The measurement system must be stable
Measurement system variation is attributable only to common causes rather than special causes
Statistical properties (errors) are consistent within the expected range
impact on decision-making
product decisions
Type I error, producer risk or false alarm Good parts judged as "bad"
U-shaped error, consumer risk or missed alerts Bad parts judged as "good"
Correct decision choice
Improve production processes: reduce process variation
Improving measurement systems: reducing measurement system errors
process decision making
subtopic
Report common causes as special causes
Report special causes as common causes
Rules of thumb for implementation
Whether the characteristics of the part or subsystem being measured are identified in the control plan
The characteristics of the part or subsystem being measured are important in determining whether a product or process is acceptable