MindMap Gallery Big data visualization mind map
This is a mind map about big data visualization, including the classification and role of data visualization, the basics of data visualization, big data visualization methods, etc.
Edited at 2023-11-06 11:11:11El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
Big data visualization
Big data visualization overview
The concept of big data visualization
Big Data
What is big data
Problems solved by big data
Characteristics of big data
Visualization
The development history of big data visualization
Describe classic cases of visualization
Nightingale Rose Chart
Hans Rosling bubble chart
john snow cholera map
COVID-19 Big Data Visualization
Smart medical big data visualization
Smart city big data visualization
Classification and functions of data visualization
Classification of data visualization
scientific visualization
information visualization
visual analytics
The role of data visualization
(1) Data visualization makes data easier to digest (2) Data visualization makes data move (3) Data visualization data can be detected (4) Data visualization allows data to display deep information
The development direction of data visualization
Challenges faced
(1) The data scale is large and has exceeded the processing capabilities of a single machine or even a small computing cluster. However, current software and tools are not efficient, and new ideas need to be explored to solve this problem.
(2) In the process of data acquisition, analysis and processing, data quality problems are prone to occur, and special attention must be paid to data uncertainty.
(3) Data changes rapidly and dynamically and often exists in the form of streaming data. There is a need to find real-time analysis and visualization methods for streaming data.
(4) Facing complex and high-dimensional data, the current software system is mainly based on statistics and basic analysis, and its analysis capabilities are insufficient.
(5) Multi-source data have different types and structures, and existing methods are difficult to meet the processing needs of unstructured and heterogeneous data.
Direction of development
(1) Close integration of visualization technology and data mining technology. (2) Close integration of visualization technology and human-computer interaction technology. (3) Visualization technology is widely used in the processing and analysis of large-scale, high-dimensional, structured data. (4) Elastic changes in processing data jumping capabilities.
Data visualization basics
1. Understand commonly used data visualization tools
2. Master the data visualization process
Natural Issues & Social Issues (Questions and Data Sources)
data collection
Internal data processing (buried points)
External data processing (web crawlers)
Data processing and transformation
Data preprocessing
data mining
Visual mapping
User perception
Knowledge & Inspiration & Conclusion (Ultimate Goal)
3. Describe the design principles of data visualization
letter (correct)
Da (clear)
Ya (elegant)
Big data visualization methods
Time data visualization
Application of time data in big data visualization
continuous time data
ladder diagram
line chart
Fitted curve plot
discrete time data
Scatter plot
Column chart
stacked column chart
Scale data visualization
Application of proportional data in big data visualization
part and whole
pie chart
donut chart
stack
Rectangular tree diagram
spatiotemporal scale data
stacked area chart
Relational data visualization
Application of relational data in big data
Data relevance
Scatter plot, scatter plot matrix, bubble plot
Distribution rows of data
Histogram, density map, heat map
Text data visualization
Application of text data in big data
Personnel management, home appliances, public services, government decision-making, e-commerce
Text content visualization
Word cloud, document collection, time series text visualization
Visualizing text relationships
The role of text visualization
(1) Easy to understand the central idea (2) Easy to classify, compare and summarize (3) Text visualization improves people’s ability to think relatedly
Complex data visualization
Application of complex data in big data
High-dimensional multi-source data visualization
concept
High-dimensional means that the data has multiple independent attributes, and multi-dimensional means that the data has multiple related attributes.
Scatterplot, Scatterplot Matrix, Table Lens, Parallel Coordinates
Challenges faced
(1) Data complexity increases greatly. (2) The magnitude of data is growing rapidly. (3) In the process of data acquisition and processing, data quality problems will inevitably arise, and data uncertainty is of particular concern. (4) Data changes rapidly and dynamically, often in the form of streaming data.
Unstructured data visualization
Heterogeneous data
large scale data
complex data
Big data visualization methods
Datafocus
ECharts