MindMap Gallery Sugar metabolism mind map
This is a mind map about sugar metabolism, including the digestion and absorption of sugar, aerobic oxidation of sugar, synthesis and decomposition of glycogen, etc.
Edited at 2023-11-16 20:14:18El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
El cáncer de pulmón es un tumor maligno que se origina en la mucosa bronquial o las glándulas de los pulmones. Es uno de los tumores malignos con mayor morbilidad y mortalidad y mayor amenaza para la salud y la vida humana.
La diabetes es una enfermedad crónica con hiperglucemia como signo principal. Es causada principalmente por una disminución en la secreción de insulina causada por una disfunción de las células de los islotes pancreáticos, o porque el cuerpo es insensible a la acción de la insulina (es decir, resistencia a la insulina), o ambas cosas. la glucosa en la sangre es ineficaz para ser utilizada y almacenada.
El sistema digestivo es uno de los nueve sistemas principales del cuerpo humano y es el principal responsable de la ingesta, digestión, absorción y excreción de los alimentos. Consta de dos partes principales: el tracto digestivo y las glándulas digestivas.
Glucose metabolism
Digestion and Absorption of Sugar
In an energy-consuming active absorption process, with the cooperation of sodium ion-dependent glucose transporter (SGLT) and sodium ion/potassium ion-ATPase, glucose is absorbed into the small intestinal mucosal cells along the sodium ion and sodium ion concentration gradient, and then released into Blood, taken into cells with the help of glucose transporter (GLUT)
The human body does not contain β-glycosidase and cannot break down and utilize cellulose.
Anaerobic oxidation of sugar (glycolysis, reduction of pyruvate to lactate)
Glycolysis (after phosphorylation, isomerization, cleavage, dehydrogenation, and substrate-level phosphorylation to finally form 2pyruvate 2ATP 2NADH 2H )
Glucose generates glucose-6-phosphate (Hexokinase HK participates, hydrolyzes ATP, requires magnesium ions)
Glucose-6-phosphate isomerization produces fructose-6-phosphate (hexose phosphate isomerase, requires magnesium ions)
Phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate (phosphofructokinase-1, requires ATP, magnesium ions)
Fructose-1,6-bisphosphate is cleaved into two molecules of triose phosphate (aldolase, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate)
Tautomerization of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (triose phosphate isomerase, final isomerization to glyceraldehyde 3-phosphate)
Glyceraldehyde 3-phosphate is oxidized to 1,3-bisphosphoglycerate (3-phosphate dehydrogenase, hydrogen acceptor is NADH H)
Converts 1,3-bisphosphoglycerate to 3-phosphoglycerate (phosphoglycerate kinase, substrate level phosphorylation to generate ATP and 3-phosphoglycerate, requires the participation of magnesium ions)
3-Phosphoglycerate is converted to 2-phosphoglycerate (phosphoglycerate mutase, requires magnesium ions)
Dehydration of 2-phosphoglycerate to phosphoenolpyruvate
Phosphodiol pyruvate is converted into pyruvate (pyruvate kinase, substrate level phosphorylation to generate ATP, requires the participation of magnesium ions and potassium ions)
Pyruvate is reduced to lactic acid
Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate to lactate using NADH H to donate hydrogen
aerobic oxidation of sugar
Glycolysis of glucose to produce pyruvate
Oxidative decarboxylation of pyruvate to acetyl CoA (carried out in mitochondrial matrix)
Catalyzed by the key enzyme pyruvate dehydrogenase complex to generate acetyl CoA, NADH (2.5ATP), H, CO2
Acetyl CoA enters the tricarboxylic acid cycle and is coupled to oxidative phosphorylation (except for succinate dehydrogenase on the inner mitochondrial membrane, the rest are in the mitochondrial matrix) (2CO2, 3NADH H, FADH2, ATP or GTP)
Acetyl CoA condenses with oxaloacetate to form citric acid (citrate synthase)
Isomerization of citric acid into isocitrate (aconitase)
Oxidative decarboxylation of isocitrate generates α-ketoglutarate (isocitrate oxidative dehydrogenase generates NADH H, which requires the participation of magnesium ions for the first decarboxylation)
Oxidative decarboxylation of α-ketoglutarate generates succinyl CoA (α-ketoglutarate dehydrogenase complex, generates NADH H, CO2, second decarboxylation)
Succinyl-CoA is converted to succinate (succinyl-CoA synthase, the only substrate level phosphorylation to generate ARP or GTP)
Dehydrogenation of succinate to fumarate (succinate dehydrogenase (inner mitochondrial membrane), generates FADH2)
Fumaric acid adds water to form malic acid (fumarase)
Dehydrogenation of malate to oxaloacetate (malate dehydrogenase, generates NADH H)
The physiological significance of aerobic oxidation of sugar
Generate 30 or 32ATP
Glycolysis: 2ATP, 2NADH H (in the cytoplasm, transported to mitochondria to generate 3 or 5 ATP) total 5 or 7 ATP
2 pyruvate generates 2NADH H for a total of 5ATP
2tricarboxylic acid cycle generates 4CO2, 6NADH H, 2FADH2, 2ATP or GTP, a total of 20ATP
Pasteur effect
Aerobic oxidation of sugar inhibits anaerobic oxidation of sugar
pentose phosphate pathway
The non-energy-producing catabolic pathway starts from glycolysis of glucose-6-phosphate, undergoes oxidation and group transfer to produce fructose-6-phosphate and glyceraldehyde 3-phosphate, and then returns to glycolysis for metabolism.
ATP is not produced, but NADPH H (involved in compound anabolism) and ribose-5-phosphate (biosynthesis of nucleotides) are produced during metabolism.
Irreversible oxidation stage
Key enzyme: Glucose-6-phosphate dehydrogenase (G6PDH)
Reversible group transfer stage
Glycogen synthesis and breakdown
Glycogen synthesis (mainly in the liver and muscles, the kidneys can synthesize a small amount)
Glucose unit that needs to be activated (consumes two molecules of energy: ATP, UTP generates UDPG)
Need primers
The original small molecule glycogen in the cell (the glucose group of UDPG is directly added to its non-reducing end)
Glycosylated glycogen protein
Synthesis has direction
Only at the non-reducing end of the glycogen primer
branch formation
catalyzed by branching enzymes
breakdown of glycogen
Glycogen phosphorylase (acting on the α-1,4 glycosidic bond) phosphorylates a glucose group from the non-reducing end of glycogen to generate glucose-1-phosphate
debranching enzyme
Transfer the three oligosaccharide groups of the four glucose groups at the branch point to the adjacent non-reducing end and connect them with α-1,4-glycosidic bonds.
The glucose group at the branch point is hydrolyzed to form free glucose by α-1,6-glycosidic bond
Glucose-1-phosphate is converted to glucose-6-phosphate
Glucose is produced in liver cells by glucose-6-phosphatase
Muscle cells do not have glucose-6-phosphatase and can only perform glycolysis
Gluconeogenesis (conversion of non-sugar substances (lactic acid, glycerol, glycogenic amino acids) into glucose or glycogen)
Conversion of pyruvate to oxaloacetate (in mitochondrial matrix)
Pyruvate and CO2 generate oxaloacetate under the action of pyruvate carboxylase (in the mitochondrial matrix) (consuming ATP, biotin is a coenzyme)
Oxaloacetate is converted to phosphoenolpyruvate (enters the cytoplasm)
Phosphoenolpyruvate carboxykinase, consumes GTP
Phosphoenolpyruvate reacts in reverse glycolysis to produce fructose-1,6-bisphosphate
Conversion of fructose-1,6-bisphosphate to fructose-6-phosphate
Fructose diphosphate kinase-1 (the most important key enzyme, mainly subject to allosteric regulation), exergonic reaction, does not produce ATP
Glucose-6-phosphate is hydrolyzed to glucose
Glucose-6-phosphatase